ChE 63a Jan 2019 SYLLABUS

1. Introduction

Historical

Nature, Scope and Applications of Thermodynamics

Terms: system vs. surroundings, closed system vs. control volume

equilibrium, state variables, process, intensive vs.

extensive, ideal gas

Pressure relationship to momentum flux

Temperature and the Zeroth Law of Thermodynamics,

Temperature scales, Thermometry

Volumetric Properties of Pure Fluids, Two p-v-T phase diagrams

- 2. First Law of Thermodynamics for Closed Systems
 Joule's Experiments, definition of Internal Energy
 types of internal energy
 preliminary statement of 1st Law
 Definition of Heat and final statement of 1st Law
 Types of work: shaft work, p-V work
 Illustrative examples of p-V work
 Reversible and irreversible processes and relation with work
 Enthalpy: definition and illustrative examples for closed systems
- 3. First Law for Control Volume (Open Systems)

Derivation and origin of enthalpy flows

Examples: Compressors, Throttling devices, Flow through Valves,

Vessel filling problems, Vessel emptying problem

4. Thermochemistry

Specific heats as functions of temperature

Enthalpy of formation, enthalpy of reaction

First law applications to systems with chemical reactions

5. Entropy and the Second Law

Directionality of Processes, Reversible and Irreversible Processes

Statistical treatment of Entropy and the Second Law

Classical Treatment of Entropy and the Second Law, Kelvin-

Planck and Clausius statements, Carnot Cycle, Clausius inequality,

definition of entropy and statement of the second Law.

Calculations of ΔS

Examples of second law applications

- 6. Power and Refrigeration Cycles
 Rankin Cycle, Sterling Cycle
 Internal Combustion Engines (Otto cycle, Diesel cycle)
 Vapor Compression Refrigeration
- Thermodynamic Property Relations
 Fundamental Identities, Maxwell Relations

Calculations of Δu , Δh , Δs from equations of state with T,v and T,p independent variables Departure Functions Joule Thomson Expansion and Liquefaction

ChE 63a Jan 2019 Homework Policy

Students are required to work out the solution of each problem in detail to allow easy and fair grading by the TA. Exchange of information between students is limited to the general approach for solving the problem, but the detailed derivations and calculations should be performed by each student individually.

The grade will be based 25% on homework, 30% on the midterm, and 45% on the final.

ChE 63a Textbook and References

1. Textbook: Koretsky Engineering and Chemical Thermodynamics, 2nd Edition

- 2. K. Denbigh: The Principles of Chemical Equilibrium (3rd edition)
- 3. Atkins: Physical Chemistry (latest edition available)
- 4. Smith, Van Ness, Abbott: Introduction to Chemical Engineering Thermodynamics (latest edition available)

References will be on reserve in SFL